为了分析深圳市所有长租、短租公寓的信息,爬取了某租房公寓网站上深圳区域所有在租公寓信息,以下记录了爬取过程以及爬取过程中遇到的问题:
爬取代码:
import requests from requests.exceptions import RequestException from pyquery import PyQuery as pq from bs4 import BeautifulSoup import pymongo from config import * from multiprocessing import Pool client = pymongo.MongoClient(MONGO_URL) # 申明连接对象 db = client[MONGO_DB] # 申明数据库 def get_one_page_html(url): # 获取网站每一页的html headers = { \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) \" \"Chrome/85.0.4183.121 Safari/537.36\" } try: response = requests.get(url, headers=headers) if response.status_code == 200: return response.text else: return None except RequestException: return None def get_room_url(html): # 获取当前页面上所有room_info的url doc = pq(html) room_urls = doc(\'.r_lbx .r_lbx_cen .r_lbx_cena a\').items() return room_urls def parser_room_page(room_html): soup = BeautifulSoup(room_html, \'lxml\') title = soup.h1.text price = soup.find(\'div\', {\'class\': \'room-price-sale\'}).text[:-3] x = soup.find_all(\'div\', {\'class\': \'room-list\'}) area = x[0].text[7:-11] # 面积 bianhao = x[1].text[4:] house_type = x[2].text.strip()[3:7] # 户型 floor = x[5].text[4:-2] # 楼层 location1 = x[6].find_all(\'a\')[0].text # 分区 location2 = x[6].find_all(\'a\')[1].text location3 = x[6].find_all(\'a\')[2].text subway = x[7].text[4:] addition = soup.find_all(\'div\', {\'class\': \'room-title\'})[0].text yield { \'title\': title, \'price\': price, \'area\': area, \'bianhao\': bianhao, \'house_type\': house_type, \'floor\': floor, \'location1\': location1, \'location2\': location2, \'location3\': location3, \'subway\': subway, \'addition\': addition } def save_to_mongo(result): if db[MONGO_TABLE].insert_one(result): print(\'存储到mongodb成功\', result) return True return False def main(page): url = \'http://www.xxxxx.com/room/sz?page=\' + str(page) # url就不粘啦,嘻嘻 html = get_one_page_html(url) room_urls = get_room_url(html) for room_url in room_urls: room_url_href = room_url.attr(\'href\') room_html = get_one_page_html(room_url_href) if room_html is None: # 非常重要,否则room_html为None时会报错 pass else: results = parser_room_page(room_html) for result in results: save_to_mongo(result) if __name__ == \'__main__\': pool = Pool() # 使用多进程提高爬取效率 pool.map(main, [i for i in range(1, 258)])
在写爬取代码过程中遇到了两个问题:
(一)在get_room_url(html)函数中,开始是想直接return每个租房信息的room_url,但是return不同于print,函数运行到return时就会结束该函数,这样就只能返回每页第一个租房room_url。解决办法是:return 包含每页所有room_url的generator生成器,在main函数中用for循环遍历,再从每个room_url中获取href,传入到get_one_page_html(room_url_href)中进行解析。
(二)没有写第76行的if语句,我默认get_one_page_html(room_url_href)返回的room_html不为空,因此出现multiprocessing.pool.RemoteTraceback报错:
上图中显示markup为None情况下报错,点击蓝色\”F:\\ProgramFiles\\anaconda3\\lib\\site-packages\\bs4\\__init__.py\”发现markup为room_html,即部分room_html出现None情况。要解决这个问题,必须让代码跳过room_html is None的情况,因此添加 if 语句解决了这个问题。
最终成功爬取某租房公寓深圳市258页共4755条租房信息,为下一步进行数据分析做准备。
其中单条信息:
以上就是记一次python 爬虫爬取深圳租房信息的过程及遇到的问题的详细内容,更多关于python 爬虫的资料请关注自学编程网其它相关文章!