表情识别支持7种表情类型,生气、厌恶、恐惧、开心、难过、惊喜、平静等。
实现思路
使用OpenCV识别图片中的脸,在使用keras进行表情识别。
效果预览
实现代码
与《性别识别》相似,本文表情识别也是使用keras实现的,和性别识别相同,型数据使用的是oarriaga/face_classification的,代码如下:
#coding=utf-8 #表情识别 import cv2 from keras.models import load_model import numpy as np import chineseText import datetime startTime = datetime.datetime.now() emotion_classifier = load_model( \'classifier/emotion_models/simple_CNN.530-0.65.hdf5\') endTime = datetime.datetime.now() print(endTime - startTime) emotion_labels = { 0: \'生气\', 1: \'厌恶\', 2: \'恐惧\', 3: \'开心\', 4: \'难过\', 5: \'惊喜\', 6: \'平静\' } img = cv2.imread(\"img/emotion/emotion.png\") face_classifier = cv2.CascadeClassifier( \"C:\\Python36\\Lib\\site-packages\\opencv-master\\data\\haarcascades\\haarcascade_frontalface_default.xml\" ) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(40, 40)) color = (255, 0, 0) for (x, y, w, h) in faces: gray_face = gray[(y):(y + h), (x):(x + w)] gray_face = cv2.resize(gray_face, (48, 48)) gray_face = gray_face / 255.0 gray_face = np.expand_dims(gray_face, 0) gray_face = np.expand_dims(gray_face, -1) emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face)) emotion = emotion_labels[emotion_label_arg] cv2.rectangle(img, (x + 10, y + 10), (x + h - 10, y + w - 10), (255, 255, 255), 2) img = chineseText.cv2ImgAddText(img, emotion, x + h * 0.3, y, color, 20) cv2.imshow(\"Image\", img) cv2.waitKey(0) cv2.destroyAllWindows()
以上就是python 实现表情识别的详细内容,更多关于python 表情识别的资料请关注自学编程网其它相关文章!